nullhomotopic covering - определение. Что такое nullhomotopic covering
DICLIB.COM
Языковые инструменты на ИИ
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое nullhomotopic covering - определение

TYPE OF COMPUTATIONAL PROBLEM
Covering Problem; Covering problem; Rainbow covering

Covering group         
CONCEPT IN TOPOLOGICAL GROUP THEORY
Universal covering group; Covering homomorphism; Double covering group; Lattice of covering groups; Abelian covering
In mathematics, a covering group of a topological group H is a covering space G of H such that G is a topological group and the covering map is a continuous group homomorphism. The map p is called the covering homomorphism.
Covering space         
  • frameless
  • Intuitively, a covering locally projects a "stack of pancakes" above an [[open neighborhood]] <math>U</math> onto <math>U</math>
TYPE OF CONTINUOUS MAP IN TOPOLOGY
Universal cover; Universal covers; Universal Cover; Universal covering; Deck transformation group; Universal covering space; Deck transformation; Galois covering; Covering map; Covering transformation; Covering maps; Double cover (topology); Deck transformations; Universal coverings; Galois theory of covering spaces; Simply connected covering; Regular covering; Regular cover; Regular covering group
A covering of a topological space X is a continuous map \pi : E \rightarrow X with special properties.
covering         
WIKIMEDIA DISAMBIGUATION PAGE
Covering (graph theory); Graph cover; Covering (disambiguation); Coverings
n.
Cover, tegument, integument, capsule, top, case.

Википедия

Covering problems

In combinatorics and computer science, covering problems are computational problems that ask whether a certain combinatorial structure 'covers' another, or how large the structure has to be to do that. Covering problems are minimization problems and usually integer linear programs, whose dual problems are called packing problems.

The most prominent examples of covering problems are the set cover problem, which is equivalent to the hitting set problem, and its special cases, the vertex cover problem and the edge cover problem.